SPARK SUPPLEMENTARY MATERIAL
A. Al Testing Code Generation Prompt

Generate Puppeteer code to achieve the required interaction
and evaluation for: [taskDescription]. The reference
code answer is: [referenceCode]. Evaluation should be
done by getting the element, get the requirement from the
element, and return if the requirement is met. If no interaction
is needed, just evaluate. Do not reply with any natural language
text, only the JavaScript code. Do not include any comment.
A reply example is as follows: const selector = '';
await page.click (selector);

B. User Study Recruitment Table

TABLE I
WE RECRUITED 16 PARTICIPANTS WITH WEB PROGRAMMING
EXPERIENCE.

PID Gender Web Prog. Proficiency

1 Female Intermediate
2 Female Intermediate
3 Male Intermediate
4 Female Beginner
5 Female Intermediate
6 Female Beginner
7 Female Intermediate
8 Female Advanced
9 Female Intermediate
10 Male Beginner
11 Female Beginner
12 Female Beginner
13 Female Intermediate
14 Male Intermediate
15 Female Beginner
16 Male Intermediate
17 Male Intermediate
18 Female Beginner
19 Female Intermediate
20 Female Beginner
21 Male Beginner
22 Female Beginner

C. Exercise: Create a To-Do List Webpage

In this exercise, you will create a simple to-do list webpage
using HTML, CSS, and JavaScript. You will work on three
files: index.html, script.js, and styles.css. Follow the instruc-
tions below to build and style the webpage.

1) HTML Structure:

o Title: Add a title <h1> at the top of your webpage with
the text "Todo List" and ID #pageTitle. Set the
font size to 25px and make the text bold.

o Input Section:

TABLE I

‘WE RECRUITED 16 PARTICIPANTS WITH TEACHING EXPERIENCE AND

WERE FAMILIAR WITH WEB PROGRAMMING.

PID Gender Web Prog. Exp. Teaching Exp.

1 Male 1 year Teaching Assistant
2 Female 2 years Teaching Assistant
3 Female 1 year Teaching Assistant
4 Female 1 year Teaching Assistant
5 Female 2 year Teaching Assistant
7 Female 3 years Teaching Assistant
8 Male 1 year Instructor

9 Male More than 6 years Teaching Assistant
10 Male 3 years Tutor

11 Female 1 year Teaching Assistant
12 Female 2 years Tutor

13 Female 3 years Instructor

14 Female 2 years Teaching Assistant
15 Male 3 years None

16 Male 2 years Teaching Assistant

— Create an input box <input type=\text">
where users can type their tasks. Give this input box
the ID input.

— Add a button next to the input box with the text
"Add" and the ID #addBtn.

— Place the input box and the button inside a <div>
element with the ID #inputContainer.

— Make sure the input box and the button are aligned
horizontally in the same row and centered within this
<diwv>.

o Todo List Container: Create an empty <div> container

below the input section where the tasks will appear. Give
this container the ID #todoList.

2) Add Button Interactivity:
o Adding Items: When the Add button is clicked, a new

task should be added to the #todoList container
you just created. Each new task has the class name
.todoItem. “Adding and Removing Classes” in the
Cheat Sheet for syntax guidance.

Task Structure: Each todoltem should include two
elements with class name .itemContent and
.deleteBtn: .itemContent: The text of the task
from <input>. .deleteBtn: A button with the text
"Delete".

Styling the Items: Set the width of each .todoItem
to 350px. Ensure that .itemContent, and
.deleteBtn are aligned in the same row, with
space between the text and the Delete button.

3) Delete Button Interactivity:
o Deleting Tasks: When the Delete button is clicked, the

entire .todoItem should be removed from the list.

o Styling the Delete Button:

— Set the background color of the Delete button to
red.

— When you hover over the Delete button, the back-
ground color should change to darkred.

Follow these requirements to create your to-do list page,
making sure your web page works as described.

D. Exercise: Create an Image Carousel

In this exercise, you will create a simple image carousel
webpage using HTML, CSS, and JavaScript. You will work
on three files: index.html, script.js, and styles.css. Follow the
instructions below to build and style the webpage.

1) HTML Structure:

o Title: Add a title <h1> at the top of your webpage with
the text "Gallery" and the ID #pageTitle. Set the font
size to 25px and make the text bold.

o Thumbnails Section: Create a <div> container below
the title for the thumbnails. Give this container the ID
#thumbnails. This container will eventually display a
series of images.

o Featured Image Section:

— Below the thumbnails section, add a <div> con-
tainer with ID #featured_container.

— Add an img element with the ID #featured in the
#featured_container. This image will display
a larger version of the selected thumbnail.

— Also, include a div below the img element
with the ID #current_description in the
#featured_container to show the description
of the currently selected image.

2) Thumbnails Generation:
o Images Gallery:

— We have provided an array called images in your
script.js in your starter file. Each element in this
array should be an object containing three properties:
url, alt, id, and description. Write a script that loops
through the images array and creates a new
element for each image.

— Each element should be appended to the
thumbnails container. And it should has

x Its src attribute is set to the url from images
* Its alt attribute is set to the alt from images
x Its id attribute is set to the 1d from images
o Styling the Thumbnails:
— Ensure all thumbnail images are displayed in a hori-
zontal row and centered in the thumbnails container.
— Each thumbnail image should have a width of
100px.
3) Making Images Clickable:
¢ Click an image:
— Add interactivity so that when a user clicks on
a thumbnail, the src and alt attributes of the
image #featured element are updated to show the
selected image.

— Also, update the #current_description ele-
ment to display the description from images associ-
ated with the clicked image.

Highlight the selected image:

— Ensure that the currently selected thumbnail image
is highlighted with a 1px solid red border.

— Make sure that only one image is highlighted at
a time. When a new thumbnail is clicked, remove
the highlighted class from any previously highlighted
image.

Styling the Featured Image: The featured image should
be centered and have a width of 500px.

Follow these requirements to create your to-do list page,
making sure your web page works as described.

E. Quiz Questions Example

Y
2)

3)

4)

5)

How many students are currently enrolled in the class?
Students were expected to achieve the following learning
outcomes before the in-class exercises. Based on their
performance, is there a learning objective you would like
to revisit at the beginning of your next lecture? Why?
(You may consider this question throughout the entire
observation.)

¢ Getting references to DOM nodes, for example with
querySelector () and getElementById().

e Creating new nodes, for example with
innerHTML () and createElement ().

¢ Understanding how to modify the layout using
flexbox.

¢ Adding and removing nodes to the DOM with
appendChild () and removeChild ().

« Setting attributes to elements, e.g., font-size.

« Manipulating styles with Element .style. and
Element.classList. *.

o I am not sure.

After the third timestamp, for students who didn’t set
the pageTitle font size to 25px, what font size did
they use instead?

o 30px

o 32px

o 24px

. 16pX

e | am not sure.
After the 4th timestamp, please enter at least 1 student
number for those who have set the font size to 25px.

In the sixth timestamp, how many students have cor-
rectly implemented all the requirements in the Basic
Setup checkpoint according to the rubric?

o 0-6 students

e 6-11 students

e 11-16 students

e More than 17 students
o [am not sure.

0)

7)

8)

9)

From the students who have not yet completed the
programming problem, select one who appears to be
struggling. Review this student’s programming progress
history and provide feedback.

After the 8th timestamp, explore freely with the tool
to review students’ implementation of the Add Button
Interactivity and explain any issue you observed.

In the 15th timestamp, among these students, who is
furthest from correctly finishing this programming prob-
lem?

o Student 3

o Student 5

o Student 6

o Student 7

e I am not sure.

After the time alert, what error did you observe for the
added todo item functionality that failed to meet the
space-between requirement for .itemContent
and .deleteBtn in .todoItem, causing them to
appear on two separate rows? What do you think might
be the reason for this?

o 0 student
e 1 student
o 2 students
o 3 students
o 4 students
e I am not sure.

